波数: \( k \) 、光速: \( c \) 、光路長差: \( OPD \) 、波長: \( \lambda \) 、周波数: \( \nu \) 、伝搬時間差: \( \frac{OPD}{c} = \tau_{p} \)
$$ \begin{eqnarray} E_{1} & = & A_{1} \exp [i(\omega t - k_{1}l_{1})] \\ E_{2} & = & A_{2} \exp [i(\omega t - k_{2}l_{2})] \end{eqnarray} $$ $$ E_{out} = E_{1} + E_{2} $$
$$ \begin{eqnarray}
|Z|^{2} & = & Re^{2} + Im^{2} \\
& = & (Re + iIm)(Re - iIm) \\
& = & Z \times Z^{\ast}
\end{eqnarray} $$
\( \ast \) は、複素共役。 |
$$ \begin{eqnarray} Z + Z^{\ast} & = & (Re + iIm)+(Re - iIm) \\ & = & 2Re \end{eqnarray} $$ |
干渉項 ※ \( \cos (\ast) \)の部分
$$ \begin{eqnarray} \cos (k_{2}l_{2} - k_{1}l_{1}) & = & \cos (2 \pi \cdot \dfrac{1}{\lambda} \cdot OPD) \\ & = & \cos (2 \pi \cdot \dfrac{OPD}{c} \cdot \nu ) \\ & = & \cos (2 \pi \cdot \tau_{p} \cdot \nu ) \\ \end{eqnarray} $$
$$ \cos (2 \pi \cdot \dfrac{1}{周期} \cdot 横軸 ) $$
$$ \cos (角速度 \cdot 横軸 ) $$
 ̄\ / ̄\ |